Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
ACS Appl Mater Interfaces ; 16(17): 22493-22503, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647220

RESUMO

Poly(levodopa) nanoparticles (P(l-DOPA) NPs) are another kind of melanin mimetic besides well-established polydopamine nanoparticles (PDA NPs). Due to the presence of carboxyl groups, the oxidative polymerization of l-DOPA to obtain particles was not as efficient as that of dopamine. Several established methods toward P(l-DOPA) NP fabrication do not combine convenience, morphological regularity, size controllability, low cost, and adaptability to metal-free application scenarios. In this work, P(l-DOPA) NPs were successfully prepared in hot water with the assistant of organic quaternary ammonium, due to the extra physical cross-linking mediated by cations. The employed physical interactions could also be affected by quaternary ammonium structure (i.e., number of cation heads, length of alkyl chain) to achieve different polymerization acceleration effects. The obtained P(l-DOPA) NPs retained superior photothermal properties and outperformed PDA-based melanin materials. Furthermore, P(l-DOPA) NPs were used in photothermal tumor therapy and showed better efficacy. This study offers new insights into the synthesis of melanin-like materials, as well as new understanding of the interaction between quaternary ammonium and bioinspired polyphenolic materials.


Assuntos
Di-Hidroxifenilalanina/análogos & derivados , Indóis , Levodopa , Melaninas , Nanopartículas , Compostos de Amônio Quaternário , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Nanopartículas/química , Melaninas/química , Animais , Camundongos , Levodopa/química , Terapia Fototérmica , Humanos , Linhagem Celular Tumoral , Polímeros/química , Polímeros/síntese química , Polímeros/farmacologia
2.
Small ; : e2401731, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682736

RESUMO

Natural polyphenolic compounds play a vital role in nature and are widely utilized as building blocks in the fabrication of emerging functional nanomaterials. Although diverse fabrication methodologies are developed in recent years, the challenges of purification, uncontrollable reaction processes and additional additives persist. Herein, a modular and facile methodology is reported toward the fabrication of natural polyphenolic nanoparticles. By utilizing low frequency ultrasound (40 kHz), the assembly of various natural polyphenolic building blocks is successfully induced, allowing for precise control over the particle formation process. The resulting natural polyphenolic nanoparticles possessed excellent in vitro antioxidative abilities and in vivo therapeutic effects in typical oxidative stress models including wound healing and acute kidney injury. This study opens new avenues for the fabrication of functional materials from naturally occurring building blocks, offering promising prospects for future advancements in this field.

3.
Mater Horiz ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441227

RESUMO

Mussel-inspired polydopamine (PDA) coatings have gained significant attention in various fields, including biomedicine, energy, detection, and UV protection, owing to their versatile and promising properties. Among these properties, UV shielding stands out as a key feature of PDA coatings. Nevertheless, the current methods for tuning the UV-shielding properties of PDA coatings are quite limited, and only rely on thickness adjustment, which might involve additional issues like color and visible light transmittance to the coating layer. In this study, we propose a facile and modular approach to enhance the UV absorption of PDA coatings by incorporating thiol-heterocycle (TH) derivatives. Both pre- and post-modification strategies can effectively impede the formation of conjugated structures within PDA, leading to enhanced UV absorption within the PDA layers. More importantly, these strategies can improve the UV absorption of PDA coatings while reducing the visible light absorption. Furthermore, this method enabled efficient regulation of the UV absorption of PDA coatings by altering the ring type (benzene ring or pyridine ring) and substituent on the ring (methoxyl group or hydrogen atom). These PDA coatings with enhanced UV absorption demonstrate great promise for applications in UV protection, antibacterial activity, wound healing and dye degradation.

4.
Biomacromolecules ; 25(4): 2563-2573, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485470

RESUMO

In the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (l-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions. Herein, poly(levodopa) nanoparticles [P(l-DOPA) NPs] were synthesized with the assistance of zinc oxide as a supplement to synthetic eumelanin. This study found that P(l-DOPA) NPs had ∼90% DHICA-derived subunits on their surface and exhibited superior antioxidant activity compared to PDA NPs due to their looser polymeric microstructure. Benefitting from a stronger ROS scavenging ability, P(l-DOPA) NPs outperformed PDA NPs in treating cellular oxidative stress and acute inflammation. This research opens up new possibilities for the development and application of novel melanin-like materials.


Assuntos
Levodopa , Melaninas , Humanos , Melaninas/química , Antioxidantes , Inflamação/tratamento farmacológico
5.
Biomacromolecules ; 25(4): 2607-2620, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530873

RESUMO

Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.


Assuntos
Nanopartículas , Fármacos Neuroprotetores , Traumatismos da Medula Espinal , Humanos , Riluzol/farmacologia , Riluzol/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico , Ácido Glutâmico , Inflamação/tratamento farmacológico , Medula Espinal
6.
Adv Sci (Weinh) ; 11(16): e2310012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359060

RESUMO

Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.


Assuntos
Polifenóis , Pele , Polifenóis/farmacologia , Animais , Camundongos , Pele/efeitos dos fármacos , Pele/metabolismo , Nanopartículas/química , Zanthoxylum/química , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Humanos
7.
Biomater Sci ; 12(9): 2282-2291, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38415775

RESUMO

Bio-adhesives used clinically, commonly have the ability to fill surgical voids and support wound healing, but which are devoid of antibacterial activity, and thus, could not meet the particular needs of the infected wound site. Herein, a series of natural polyphenolic antibacterial bio-adhesives were prepared via simple mixing and heating of polyphenols and acid anhydrides without any solvent or catalyst. Upon the acid anhydride ring opening and acylation reactions, various natural polyphenolic bio-adhesives could adhere to various substrates (i.e., tissue, wood, glass, rubber, paper, plastic, and metal) based on multi-interactions. Moreover, these bio-adhesives showed excellent antibacterial and anti-infection activity, rapid hemostatic performance and appropriate biodegradability, which could be widely used in promoting bacterial infection wound healing and hot burn infection wound repair. This work could provide a new strategy for strong adhesives using naturally occurring molecules, and provide a method for the preparation of novel multifunctional wound dressings for infected wound healing.


Assuntos
Antibacterianos , Polifenóis , Cicatrização , Cicatrização/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Animais , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Humanos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
8.
Sci Rep ; 14(1): 1023, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200230

RESUMO

Using three-dimensional (3D) printing technology to make the porous tantalum plate and modify its surface. The physicochemical properties, cytocompatibility, antioxidant capacity, and histocompatibility of the modified materials were evaluated to prepare for the repair of craniomaxillofacial bone defects. The porous tantalum plates were 3D printed by selective laser melting technology. Tantalum plates were surface modified with a metal polyphenol network. The surface-modified plates were analyzed for cytocompatibility using thiazolyl blue tetrazolium bromide and live/dead cell staining. The antioxidant capacity of the surface-modified plates was assessed by measuring the levels of intracellular reactive oxygen species, reduced glutathione, superoxide dismutase, and malondialdehyde. The histocompatibility of the plates was evaluated by animal experiments. The results obtained that the tantalum plates with uniform small pores exhibited a high mechanical strength. The surface-modified plates had much better hydrophilicity. In vitro cell experiments showed that the surface-modified plates had higher cytocompatibility and antioxidant capacity than blank tantalum plates. Through subcutaneous implantation in rabbits, the surface-modified plates demonstrated good histocompatibility. Hence, surface-modified tantalum plates had the potential to be used as an implant material for the treatment of craniomaxillofacial bone defects.


Assuntos
Experimentação Animal , Lagomorpha , Animais , Coelhos , Antioxidantes , Tantálio , Placas Ósseas , Polifenóis
9.
Biomacromolecules ; 25(2): 1133-1143, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38226558

RESUMO

Apart from bacterial growth and endotoxin generation, the excessive production of reactive radicals linked with sepsis also has a substantial impact on triggering an inflammatory response and further treatment failure. Hence, the rational design and fabrication of robust and multifunctional nanoparticles (NPs) present a viable means of overcoming this dilemma. In this study, we used antibiotic polymyxin B (PMB) and antioxidant natural polyphenolic protocatechualdehyde (PCA) to construct robust and multifunctional NPs for sepsis treatment, leveraging the rich chemistries of PCA. The PMB release profile from the NPs demonstrated pH-responsive behavior, which allowed the NPs to exhibit effective bacterial killing and radical scavenging properties. Data from in vitro cells stimulated with H2O2 and lipopolysaccharide (LPS) showed the multifunctionalities of NPs, including intracellular reactive oxygen species (ROS) scavenging, elimination of the bacterial toxin LPS, inhibiting macrophage M1 polarization, and anti-inflammation capabilities. Additionally, in vivo studies further demonstrated that NPs could increase the effectiveness of sepsis treatment by lowering the bacterial survival ratio, the expression of the oxidative marker malondialdehyde (MDA), and the expression of inflammatory cytokine TNF-α. Overall, this work provides ideas of using those robust and multifunctional therapeutic NPs toward enhanced sepsis therapy efficiency.


Assuntos
Nanopartículas Multifuncionais , Nanopartículas , Sepse , Humanos , Lipopolissacarídeos/toxicidade , Peróxido de Hidrogênio , Polimixina B/farmacologia , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Adv Mater ; 36(3): e2308393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010256

RESUMO

The abnormal amyloid-ß accumulation is essential and obbligato in Alzheimer's disease pathogenesis and natural polyphenols exhibit great potential as amyloid aggregation inhibitors. However, the poor metabolic stability, low bioavailability, and weak blood-brain barrier crossing ability of natural polyphenol molecules fail to meet clinical needs. Here, a universal protocol to prepare natural polyphenolic nanodots is developed by heating in aqueous solution without unacceptable additives. The nanodots are able to not only inhibit amyloid-ß fibrillization and trigger the fibril disaggregation, but mitigate the amyloid-ß-plaque-induced cascade impairments including normalizing oxidative microenvironment, altering microglial polarization, and rescuing neuronal death and synaptic loss, which results in significant improvements in recognition and cognition deficits in transgenic mice. More importantly, natural polyphenolic nanodots possess stronger antiamyloidogenic performance compared with small molecule, as well as penetrate the blood-brain barrier. The excellent biocompatibility further guarantees the potential of natural polyphenolic nanodots for clinical applications. It is expected that natural polyphenolic nanodots provide an attractive paradigm to support the development of the therapeutics for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Barreira Hematoencefálica/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo
11.
ACS Appl Bio Mater ; 6(11): 4586-4591, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856084

RESUMO

Bone defects have a severe impact on the health and lives of patients due to their long-lasting and difficult-to-treat features. Recent studies have shown that there are complex microenvironments, including excessive production of reactive oxygen species. Herein, a surface functionalization strategy using metal-polyphenolic networks was used, which was found to be beneficial in restoring oxidative balance and enhancing osseointegration. The surface properties, biocompatibility, intracellular ROS scavenging, and osseointegration capacity were evaluated, and the therapeutic effects were confirmed using a skull defect model. This approach has great potential to improve complex microenvironments and enhance the efficiency of bone tissue regeneration.


Assuntos
Antioxidantes , Biomimética , Humanos , Antioxidantes/farmacologia , Regeneração Óssea , Osso e Ossos , Espécies Reativas de Oxigênio
12.
ACS Nano ; 17(18): 18562-18575, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708443

RESUMO

The treatment of spinal cord injury (SCI) remains unsatisfactory owing to the complex pathophysiological microenvironments at the injury site and the limited regenerative potential of the central nervous system. Metformin has been proven in clinical and animal experiments to repair damaged structures and functions by promoting endogenous neurogenesis. However, in the early stage of acute SCI, the adverse pathophysiological microenvironment of the injury sites, such as reactive oxygen species and inflammatory factor storm, can prevent the activation of endogenous neural stem cells (NSCs) and the differentiation of NSCs into neurons, decreasing the whole repair effect. To address those issues, a series of robust and multifunctional natural polyphenol-metformin nanoparticles (polyphenol-Met NPs) were fabricated with pH-responsiveness and excellent antioxidative capacities. The resulting NPs possessed several favorable advantages: First, the NPs were composed of active ingredients with different biological properties, without the need for carriers; second, the pH-responsiveness feature could allow targeted drug delivery at the injured site; more importantly, NPs enabled drugs with different performances to exhibit strong synergistic effects. The results demonstrated that the improved microenvironment by natural polyphenols boosted the differentiation of activated NSCs into neurons and oligodendrocytes, which could efficiently repair the injured nerve structures and enhance the functional recovery of the SCI rats. This work highlighted the design and fabrication of robust and multifunctional NPs for SCI treatment via efficient microenvironmental regulation and targeted NSCs activation.


Assuntos
Metformina , Nanopartículas Multifuncionais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Metformina/farmacologia , Polifenóis/farmacologia
13.
Carbohydr Polym ; 316: 121074, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321749

RESUMO

This research investigated the effect of different types of plant cell wall fibres, including cereal (i.e., barley, sorghum, and rice), legume (i.e., pea, faba bean, and mung bean), and tuber (potato, sweet potato, and yam) cell wall fibres on in vitro faecal fermentation profiles and gut microbiota composition. The cell wall composition, specifically the content of lignin and pectin, was found to have a significant influence on the gut microbiota and fermentation outcomes. Compared with type I cell walls (legume and tuber) which have high pectin content, the type II cell walls (cereal) which are high in lignin but low in pectin had a lower fermentation rates and less short-chain fatty acid production. The redundancy analysis showed samples with similar fibre composition and fermentation profiles clustered together, and the principal coordinate analysis revealed separation among different types of cell walls and closer proximity among the same cell wall types. These findings emphasize the importance of cell wall composition in shaping the microbial community during fermentation and contribute to a better understanding of the relationship between plant cell walls and gut health. This research has practical implications for the development of functional foods and dietary interventions.


Assuntos
Fabaceae , Microbioma Gastrointestinal , Lignina/metabolismo , Fermentação , Pectinas/metabolismo , Ácidos Graxos Voláteis/metabolismo , Parede Celular/metabolismo , Fabaceae/metabolismo , Fezes , Grão Comestível/metabolismo , Fibras na Dieta/metabolismo
14.
Int J Biol Macromol ; 242(Pt 1): 124618, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148948

RESUMO

Rapid occlusion is the culprit leading to implantation failure of biological blood vessels. Although adenosine is a clinical-proven drug to overcome the problem, its short half-life and turbulent burst-release limit its direct application. Thus, a pH/temperature dual-responsive blood vessel possessed controllable long-term adenosine secretion was constructed based on acellular matrix via compact crosslinking by oxidized chondroitin sulfate (OCSA) and functionalized with apyrase and acid phosphatase. These enzymes, as adenosine micro-generators, controlled the adenosine release amount by "real-time-responding" to acidity and temperature of vascular inflammation sites. Additionally, the macrophage phenotype was switched from M1 to M2, and related factors expression proved that adenosine release was effectively regulated with the severity of inflammation. What's more, the ultra-structure for degradation resisting and endothelialization accelerating was also preserved by their "double-crosslinking". Therefore, this work suggested a new feasible strategy providing a bright future of long-term patency for transplanted blood vessels.


Assuntos
Prótese Vascular , Macrófagos , Humanos , Inflamação , Adenosina/química
15.
J Control Release ; 356: 84-92, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813037

RESUMO

Iron-overload diseases are characterized by a variety of symptoms resulting from excessive iron stores, oxidative stress and consequent end-organ damage. Deferoxamine (DFO) is an iron-chelator that can protect tissues from iron-induced damage. However, its application is limited due to its low stability and weak free radical scavenging ability. Herein, natural polyphenols have been employed to enhance the protective efficacy of DFO through the construction of supramolecular dynamic amphiphiles, which self-assemble into spherical nanoparticles with excellent scavenging capacity against both iron (III) and reactive oxygen species (ROS). This class of natural polyphenols-assisted nanoparticles was found to exhibit enhanced protective efficacy both in vitro in an iron-overload cell model and in vivo in an intracerebral hemorrhage model. This strategy of constructing natural polyphenols- assisted nanoparticles could benefit the treatment of iron-overload related diseases with excessive accumulation of toxic or harmful substances.


Assuntos
Sobrecarga de Ferro , Nanopartículas , Humanos , Desferroxamina/uso terapêutico , Desferroxamina/farmacologia , Quelantes de Ferro/uso terapêutico , Polifenóis/uso terapêutico , Ferro
16.
Mater Horiz ; 10(5): 1789-1794, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36853277

RESUMO

All-small-molecule dynamic hydrogels have shown great promise in cell culture, tissue engineering, and controlled drug release. The further development of more kinds of all-small-molecule dynamic hydrogels is severely hindered by the lack of enough commensurate building blocks from nature and on the market. Inspired by the widely developed metal-organic framework structures, herein we report a facile fabrication of metallogels by direct gelation of small molecular compounds including aminoglycosides (AGs), 2,2'-bipyridine-4,4'-dicarboxaldehyde (BIPY), and metal ions via coordination interactions and Schiff base reactions. These prepared metallogels exhibited good biodegradability and biosafety, excellent conductivity, tunable mechanical properties and potent antibacterial activities both in vitro and in vivo. This study provides a new strategy for expanding the scope of all-small-molecule dynamic metallogels for various biomedical applications.


Assuntos
Hidrogéis , Sepse , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Metais , Engenharia Tecidual , Sepse/tratamento farmacológico
17.
Carbohydr Polym ; 305: 120546, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737196

RESUMO

To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.


Assuntos
Regeneração Óssea , Osteogênese , Celulose/farmacologia , Diferenciação Celular , Imunomodulação , Íons , Alicerces Teciduais
18.
Int J Biol Macromol ; 226: 965-973, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36526066

RESUMO

Intact cells, as the smallest unit of whole foods, were isolated from three legume crops and fermented with human faecal inoculum to elucidate the effect of food macro-nutrients compositional difference (starch, proteins and lipids) on in vitro colonic fermentation profiles. After 48 h of fermentation, the highest production of short-chain fatty acids (SCFAs) were observed for the pea cells, abundance in starch (64.9 %, db). In contrast, branch chain fatty acids (BCFAs) were the major metabolites for protein-enriched soybean cells (protein content 56.9 %, db). The peanut cells rich in lipids (49.2 %, db) has the lowest fermentation rate among the three varieties. Correspondingly, pea cells favoured the growth of Bifidobacterium, whereas soybean and peanut cells promoted an abundance of Bacteroides and Shigella, respectively. Furthermore, except the intact pea cells promoting the abundance of butyrate producer Roseburia, a similar fermentation pattern was found between intact and broken cells suggesting that macro-nutrient types, rather than structure, dominate the production of metabolites in colonic fermentation. The findings elucidate how the food compositional difference can modulate the gut microbiome and thus provide the knowledge to design whole food legumes-based functional foods.


Assuntos
Fabaceae , Microbiota , Humanos , Amido/química , Células Vegetais , Fermentação , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Fabaceae/metabolismo , Verduras
19.
J Mater Chem B ; 11(3): 482-499, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36468674

RESUMO

Periodontitis is defined as a chronic inflammatory disease in which the continuous activation of oxidative stress surpasses the reactive oxygen species (ROS) scavenging capacity of the endogenous antioxidative defense system. Studies have demonstrated that ROS-scavenging biomaterials should be promising candidates for periodontitis therapy. To benefit the understanding and design of scavenging biomaterials for periodontitis, this review details the relationship between ROS and periodontitis, including direct and indirect damage, the application of ROS-scavenging biomaterials in periodontitis, including organic and inorganic ROS-scavenging biomaterials, and the various dosage forms of fabricated materials currently used for periodontal therapy. Finally, the current situation and further prospects of ROS-scavenging biomaterials in periodontal applications are summarized. Expecting that improved ROS-scavenging biomaterials could be better designed and developed for periodontal and even clinical application.


Assuntos
Materiais Biocompatíveis , Periodontite , Humanos , Espécies Reativas de Oxigênio , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Periodontite/tratamento farmacológico , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
20.
J Mater Chem B ; 10(38): 7875-7883, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36093595

RESUMO

Acute liver injury (ALI) could severely destroy the liver function and cause inevitable damage to human health. Studies have demonstrated that excessive reactive oxygen species (ROS) and accompanying inflammatory factors play vital roles in the ALI disease. Herein, we fabricated a kind of nature-inspired myricetin-enriched nanomaterial via Michael addition and Schiff base reaction, which possessed uniform morphology, tunable component ratios, great stabilities, promising free radical scavenging abilities, biocompatibility and protective effects towards cells under oxidative stress. Additionally, the therapeutic effects were demonstrated using an ALI model by down-regulating ROS and inflammatory levels and restoring the liver function. This study could provide a strategy to construct robust and antioxidative nanomaterials using naturally occurring molecules against intractable diseases.


Assuntos
Antioxidantes , Nanopartículas , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides , Humanos , Fígado , Espécies Reativas de Oxigênio , Bases de Schiff
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA